An “Almost Exact” Simulation Method for the Heston Model

Robert Smith
Global Structuring

Madrid, October 18, 2006
1. The Heston Model
2. An Exact Simulation Method
3. An Almost Exact Simulation Method
4. Conclusions and Extensions
The Heston Model

\[dF_t = \sqrt{V_t} F_t \, dW_1 \]

\[dV_t = \kappa_t (\theta_t - V_t) \, dt + \sigma_t \sqrt{V_t} \, dW_2 \]

\[dW_1 dW_2 = \rho_t \, dt \]

- In Fourier Space, two dimensional Heston PDE becomes one dimensional

=> Vanilla prices have closed form solutions
The Heston Model (II)

• Pricing involves numerically integrating analytical solutions of Riccatti Equations.

• Time dependent case (with piecewise constant parameters) is no more complicated than the flat case!!!

• The Riccatti Equations must be solved in sections of time in which the parameters are constant, working backwards from maturity.

• Computational time \(\approx\) number of time sections * time to calculate flat Heston.
Contents

1. The Heston Model
2. An Exact Simulation Method
3. An Almost Exact Simulation Method
4. Conclusions and Extensions
An Exact Simulation Method

- Black Scholes has analytical solution for SDE => we can “long jump” in Monte Carlo

\[S_t = S_0 e^{\left(r - \frac{1}{2} \sigma^2 \right) t + \sigma \sqrt{t} N(0,1) } \]

- In Stochastic Vol Models we have to do many little timesteps (SLOW!)

- Much research on better discretisation methods than Euler (e.g. Predictor-Corrector, Milstein…)

- Broadie and Kaya presented an “Exact Simulation Method” in their paper of 2003
An Exact Simulation Method (II)

Advantages of an exact simulation method are

• We need only simulate the dates of importance for the financial product we are modeling.

• The simulations have no bias in the error so we can construct valid Confidence Intervals.

• The Order of Convergence improves from $\frac{1}{3}$ to $\frac{1}{2}$.

• Greeks can be calculated using the same “tricks” as with Black-Scholes model because the forward price is lognormal conditional upon the path of the variance.
An Exact Simulation Method (III)

\[F_t = F_u \exp\left[-\frac{1}{2} \int_u^t V_s ds + \rho \int_u^t \sqrt{V_s} dW_s^{(1)} + \sqrt{1 - \rho^2} \int_u^t \sqrt{V_s} dW_s^{(2)} \right] \]

\[V_t = V_u + \kappa \theta (t - u) - \kappa \int_u^t V_s ds + \sigma \int_u^t \sqrt{V_s} dW_s^{(1)} \]

\[dW_s^{(1)} dW_s^{(2)} = 0 \]

- Generate a sample from the distribution of \(V_t \) given \(V_u \)
- Generate a sample from the distribution of \(\int_u^t V_s ds \) given \(V_t \) and \(V_u \)
- Recover \(\int_u^t \sqrt{V_s} dW_s^{(1)} \) from the above equation given \(V_t, V_u \) and \(\int_u^t V_s ds \)
- Generate a sample from the distribution of \(F_t \) given \(\int_u^t \sqrt{V_s} dW_s^{(1)} \) and \(\int_u^t V_s ds \)
1) Generate a sample from the distribution of V_t given V_u

- The distribution is known and is a non-central chi-squared distribution

- Samples can be generated using combinations of Poisson, Gamma and Normal variates

- Sankaran (1963) shows that one can transform a non-central chi squared variate into an approximately normal variate. We use this to calculate confidence intervals for V_t which we use in the next section.
An Exact Simulation Method (V)

2) Generate a sample from the distribution of given V_t and V_u

- Brute force method: the CDF is given by a numerical integral of the known characteristic function of the distribution. We can generate samples from uniform deviates by inverting the CDF using Newton’s method.

- The characteristic function is computationally expensive as it involves modified Bessel functions of the first kind with a complex argument

- We should think about caching as much as we can!
An Exact Simulation Method (VI)

The characteristic function is given by

\[
\Phi(a; V_u, V_t) = \frac{\gamma(a)e^{-\frac{1}{2}(\gamma(a)-\kappa)(t-u)}(1-e^{-\kappa(t-u)})}{\kappa(1-e^{-\gamma(a)(t-u)})} \\
\times \exp\left\{ \frac{V_u + V_t}{\sigma^2} \left[\frac{\kappa(1+e^{-\kappa(t-u)})}{1-e^{-\kappa(t-u)}} - \frac{\gamma(a)(1+e^{-\gamma(a)(t-u)})}{1-e^{-\gamma(a)(t-u)}} \right] \right\}
\]

Bessel functions of the first kind with complex argument

\[
\times \frac{I_{0.5d-\gamma}}{\sqrt{V_u V_t}} \left[\frac{4\gamma(a)e^{-0.5\gamma(a)(t-u)}}{\sigma^2(1-e^{-\gamma(a)(t-u)})} \right]
\]

\[
\times \frac{I_{0.5d-\gamma}}{\sqrt{V_u V_t}} \left[\frac{4\kappa e^{-0.5\kappa(t-u)}}{\sigma^2(1-e^{-\kappa(t-u)})} \right]
\]
3) Recover \(\int_u^t \sqrt{V_s} dW_s^{(1)} \) from the above equation given \(V_t, \ V_u \) and \(\int_u^t V_s ds \)

\[
\int_u^t \sqrt{V_s} dW_s^{(1)} = \left(\frac{1}{\sigma} \right) \left(V_t - V_u - \kappa \theta(t - u) + \kappa \int_u^t V_s ds \right)
\]
4) Generate a sample from the distribution of F_t given

\[\int_u^t \sqrt{V_s} dW_s^{(1)} \text{ and } \int_u^t V_s ds \]

- Conditional on $\int_u^t \sqrt{V_s} dW_s^{(1)}$ and $\int_u^t V_s ds$ F_t is lognormal

with drift rate

\[\hat{\mu} = -\frac{1}{2t} \int_u^t V_s ds + \frac{\rho}{t} \int_u^t \sqrt{V_s} dW_s^{(1)} \]

and volatility

\[\hat{\sigma} = \sqrt{\frac{1-\rho^2}{t}} \sqrt{\int_u^t V_s ds} \]
Contents

1. The Heston Model
2. An Exact Simulation Method
3. An Almost Exact Simulation Method
4. Conclusions and Extensions
An *Almost* Exact Simulation Method

- The Exact Simulation Method is only appropriate for options which depend on only one future point in time because the characteristic function otherwise depends on three variables, a, V_t and V_u. We cannot efficiently cache the characteristic function in three dimensions.

- If we look closely at the characteristic function we notice that it depends on V_t and V_u via their arithmetic and geometric mean which, at least in expectation, are approximately equal…
The characteristic function is given by

$$
\Phi(a; V_u, V_t) = \frac{\gamma(a) e^{-\frac{1}{2}(\gamma(a) - \kappa)(t-u)}(1-e^{-\kappa(t-u)})}{\kappa(1-e^{-\gamma(a)(t-u)})} \\
\times \exp \left\{ \frac{2}{\sigma^2} \left(\frac{V_u + V_t}{2} \right) \left[\kappa(1+e^{-\kappa(t-u)}) \right] - \frac{\gamma(a)(1+e^{-\gamma(a)(t-u)})}{1-e^{-\gamma(a)(t-u)}} \right\} \\
\times I_{0.5d-1} \left[\sqrt{\frac{V_u V_t}{\sigma^2(1-e^{-\gamma(a)(t-u)})}} \right] \\
\times I_{0.5d-1} \left[\sqrt{\frac{4\kappa e^{-0.5\kappa(t-u)}}{\sigma^2(1-e^{-\kappa(t-u)})}} \right]
$$

Arithmetic mean

Geometric mean
An Almost Exact Simulation Method (III)

• The idea is to replace both the geometric mean and the arithmetic mean by a weighted average of the two

\[z = \omega \frac{1}{2} (V_u + V_t) + (1 - \omega) \sqrt{V_u V_t} \]

• If the method is a good one we should find that the results are virtually independent of \(\omega \).

• In fact, observed differences for values of \(\omega \) between 0 and 1 were in the order of a fraction of a basis point for options up to 5 years maturity.
An Almost Exact Simulation Method (IV)

The characteristic function is now given by

$$\Phi(a, z) = \frac{\gamma(a) e^{-\frac{1}{2}(\gamma(a) - \kappa)(t-u)} (1 - e^{-\kappa(t-u)})}{\kappa(1 - e^{-\gamma(a)(t-u)})}$$

$$\times \exp \left\{ \frac{2}{\sigma^2} \left[\frac{\kappa(1 + e^{-\kappa(t-u)})}{1 - e^{-\kappa(t-u)}} - \frac{\gamma(a)(1 + e^{-\gamma(a)(t-u)})}{1 - e^{-\gamma(a)(t-u)}} \right] \right\}$$

$$I_{0.5d-1} \left[\frac{4\gamma(a) e^{-0.5\gamma(a)(t-u)}}{\sigma^2(1 - e^{-\gamma(a)(t-u)})} \right]$$

$$\times I_{0.5d-1} \left[\frac{4\kappa e^{-0.5\kappa(t-u)}}{\sigma^2(1 - e^{-\kappa(t-u)})} \right]$$

and can be efficiently cached in two dimensions.
An Almost Exact Simulation Method (V)

• We have managed to take the heavy work out of the Monte Carlo loop. Now the overhead does not depend on the number of simulations.

• Most importantly, we can now apply the method to options which depend on several points in time (very common in Equity).

• We can improve our approximation by using knowledge of the first two moments of the true distribution. (Requires only a few evaluations of the characteristic function.)

• We use the true and approximate means and variances to shift and scale our approximate distribution. In this way we ensure to match the first two moments of the true distribution.
Contents

1. The Heston Model
2. An Exact Simulation Method
3. An Almost Exact Simulation Method
4. Conclusions and Extensions
Conclusions and Extensions

• We can calibrate the time dependent Heston model as efficiently as the flat Heston model.

• The Almost Exact Simulation method outperforms other published discretisation methods. It has virtually no bias. Techniques for simulating the Greeks can be used unchanged.

• It is relatively straightforward to apply the Almost Exact Simulation method to some other well known jump processes.
References

Broadie, M., Kaya, Ö (2003), Exact Simulation of Stochastic Volatility and other Affine Jump Diffusion Processes

Sankaran, M. (1963), Approximations to the Non-Central Chi-Square Distribution, Biometrika, 50(1/2), 199-204 Schmitz : Klaus, E., Schmitz, A. (2004), Strong Taylor Schemes for Stochastic Volatility, Department of Mathematics, University of Oxford

Robert Smith (Head of Quantitative Analysis) rdsmith@gruposantander.com